CRJ LETTERS

Vol.10 No.1
June 1997

Charles River Japan Inc.
FROM THE HAND OF THE VETERINARIAN TO RESEARCH
気管支喘息とBrown Norway ラット

筑波病院内科 渡辺 東

要旨
アトピー性気管支喘息は、I 型アレルギーの代表的疾患であり、IgEを介した肥満細胞の活性化により惹起されると考えられてきた。われわれは抗原誘発性気道反応の遅発変態反応に、CD4陽性細胞の活性化が深く関与することを報告し、遅発性喘息反応に肥満細胞の活性化以外のメカニズムが存在することを示した。この観点ではあるが重要な発見は、Brown Norway（BN）ラットの気管支喘息の疾患モデルとしての有用性によるところが大きい。BNラットは、IgE抗体産生、抗原誘発性気道収縮、即時型反応と遅発型反応、好酸球性気道炎症、気道過敏性の獲得、T ヒストクラッシュのサイクルの発現など、気管支喘息の疾患モデルとして適した数々の特徴を有する。本稿では、喘息モデルとしてのBNラットに関して概説し、特に遅発型喘息反応と気道過敏性の病態に関して最近の知見を交えて論じる。

はじめに
気管支喘息は、気道炎症に伴う可逆性の細気道狭窄と、種々の刺激に対する気道過敏性により特徴付けられる疾患である。喘息患者の中で外来吸入薬であるIgE抗体を有する場合、外因性（アトピー性）気管支喘息と呼ばれる。外因性気管支喘息患者に吸入薬が導入すると、即時型喘息反応（immediate asthmatic response，I A R）に続きしばしば遅発型喘息反応（late asthmatic response，L A R）を認められる。またL A Rを発現した場合には、ヒスタミンなどの吸収刺激に対する気道過敏性（airway hyperresponsiveness：AH R）が観察され、L A RとAH Rとの関連が指摘されている。

このようにL A RとAH Rは気管支喘息の特徴であり、その病態解明が喘息の病態研究の中心的なテーマであった。従来これらの病態は、I 型アレルギー反応であるI gEを介する肥満細胞の活性化（IA R）によって引き起こされる現象と考えられ、ヒスタミン、N C F、leukotriene(LT)D₄、thromboxane As、PAFなどの化物を含む物質の関与、炎症細胞に肥満細胞が好酸球、白血球が注目されていた。

最近われわれは、CoombsとGellの過敏性反応の分類に属さないタイプの細胞性免疫反応が、L A Rの発現に深く関与することを報告した。この発見にはBNラットの気管支喘息の動物モデルとしての有用性によるところが大きい。本稿ではBrown Norway（BN）ラットの喘息モデルとしての特徴の概説を述べ、次いでL A Rの発現機序とAH Rの獲得過程に関する最近の知見を紹介する。

著者プロフィール
医学博士。1983年、筑波大学医学専門学部卒業、国立健康センターハンガリー、帝京大学第二内科助手、筑波大学病院呼吸器内科を経て1992年から2年間カナダMcGill大学Meakins一Christie研究所に留学。気管支喘息の研究に従事。カナダ胸部疾患学会フェロー、現在、筑波病院呼吸器内科部長。研究テーマは、気管支喘息の病態、呼吸器疾患、趣味は、読書、陶芸、アイスホッケーなど。
1）喘息モデルとしてのラット

従来の喘息研究においては、肺メカニクスなどの生理学的実験の都合上、犬やサルなどの動物を使用した実験が中心であった。近年肺メカニクスの解析法など技術的な進歩と免疫学的研究上の利点から、ラットやマウスなどの小動物が頻繁に使用されるようになった。特にBNラットは、アレルギー性気道狭窄反応とAHRを呈する気管支喘息の動物モデルとして紹介され、現在LAとAHRの成績に関して最も解析が進んだ動物モデルといえる。また容易に気管内挿管が可能であり、反復的抗原や薬剤の投与、正確な肺抵抗の測定などが可能であり、実験動物としての多くの利点を有する。

2）BNラットの特徴

2.1）BNラットのメサコリンに対するAHRは近交系ラットの中では低く、アレルギー反応などの後天的な機序でAHRを誘導する。一方Fisherラットは先天的なAHRを有し、統計学的には気管支喘息が多く、また気道平滑筋細胞の増殖のagonistに対する増殖が高く、細胞内Caシグナルにも差があることが知られている。このようにラットのAHRは一部統制学的な要因や平滑筋細胞自体の特性に規定されると考えられる。抗原の反復刺激によりAHRが亢進したBNラットでは、気道の平滑筋細胞の増殖することが報告されている。

2.2）感作後のIgE抗体産生

BNラットは他の近交系ラットに比べてレアギン抗体産生能が高く、アジェベントを用いるとIgE抗体産生はさらに促進される。OAを抗原として酸化アルミゲルと野口紫陽花を用いた能動感作を行うと、約1週間後からOA特異的IgE抗体が検出され、約3週後にピークを持つ。これに対してIgG抗体産生のピークは約4～10週後であることから、I型過敏性反応を惹起する目的では、感作後2週から3週に抗原刺激を行うことが多い。この他に抗原の反復吸収によっても感作は成立する。IgE抗体産生は、IL-4により制御を受けるが、BNラットではIL-4の産生が高いことが報告され、高いIgE抗体産生能との関連が示唆される。

2.3）抗原誘発性気道収縮

OA感作2週間後のBNラットに対しOA吸入刺激を行うと、約66%から70%に急激な気道狭帯反応（IAR）が観察される。このIARはIgE抗体を介する肥満細胞の活性化により引き起こされ、5-HTとLTD4拮抗薬で抑制される。IAR時の組織学的検査では、平滑筋収縮による気道狭帯が証明され、また気道狭帯には血管透過性亢進も関与する。肺組織の生切片を顕微鏡下で観察すると、IARは平滑筋収縮による気道狭帯として観察できる。

またIARで上昇した肺抵抗は、一度回復した後、刺激後3から8時間の間に持続的な気道狭帯が観察される。この気道狭帯反応は、好酸球浸潤を伴う気道炎症と過分泌を伴うLARに相当すると考えられ、その出現率は46%から66%である。BNラット以外のラットで、高頻度のLARを出現するものは知られていない。LARの病態としては、平滑筋収縮の他、過分泌、炎症細胞の浸潤、気道の浮腫が重要と考えられるが、BNラットのLARにおいても同様な変化が観察される。また、肺抵抗の上昇には組織抵抗の変化も関与することが知られている。

BNラットにおける抗原刺激後の気道狭帯と筋肉中のLT代謝産物の排泄量を比較観察した結果、IARとLARに一致してLTの産生亢進を認めた。またLTD4拮抗薬が強力にLARを抑制することから、BNラットのLARにおいてLTは重要であると考えられる。LTの産生細胞に関しては、現在のところ明確な産生細胞が特定されておらず、好酸球以外の細胞や複数の細胞間でのLTD4への変換などの機構が推測されている。
2.4 気管支肺胞洗浄と気道内炎症細胞浸潤

抗原吸収誘発5時間後の気管支肺胞洗浄の解析では、白血球の増加が主であり33，また抗MBP抗体を用いた免疫組織学的検査では好酸球浸潤が認められる51。24－32時間後の検索では、白血球数は減少し、マクロファージ、好酸球、リンパ球が増加する30。

3）LARの発現機構

近年気管支喘息とリンパ球との関係が注目されており、抗原誘発後の喘息反応におけるリンパ球の関与は明らかではない。SDラットに感作動物のIgE抗体を用いて連続感作すると、抗原刺激によりIAR様の急激な気道狭窄を観察できるが、遲発型アレルギーは認めない52。後者は発現する予定感作を行った場合であり、遅発型アレルギーに液性免疫以外の因子が推測された53。一方、T細胞の活性化作用を有するIL－2を前投与すると、BNラットで抗原刺激後のIARとLARは増強され、これらの反応にリンパ球機能が影響することが示唆された54。またLARの強さは、末梢血リンパ球の抗原刺激による幼弱化反応と相関を示し、リンパ球機能とLARが密接に関係することが推測された55。

Olivensteinらは、LARを通常発現しないSDラットを用い、ラットCD4に対するモノクローナル抗体（mAb）を用いてCD4陽性細胞を低下させると、抗原吸入刺激後にLARが観察されることを報告し、CD4陽性細胞がLARの発現を抑制している可能性を示唆した56。さらにCD4陽性細胞に対するmAbの投与は、BNラットにおける抗原誘発性LARを完全に抑制し、リンパ球のLARへの関与が最初に示された。

LAR発現におけるリンパ球の関与は、われわれの行ったadoptie transferによる実験により確認された。OA感作後ドナーの胸郭内リンパ節からT細胞を探取し、未感作BNラット（レシピエント、R）にadoptie transferを行った57。その2日後RにOA吸入刺激を行うと、LAR様の持続的な肺抵抗の上昇を認めた、対象の未感作T細胞のRやBSA刺激を受けたRではこの反応を観察しなかった（Fig.1）。個々の肺抵抗の上昇を時間軸に対する面積（AUC）で定量化すると、OA感作T細胞のRで有意な気道反応を認めた（Fig.2）。気管支肺胞洗浄の検査では、抗原刺激後8時間後では有意な変化を認めなかったが、32時間後に好酸球の増加を認めた（Fig.3）。以上より、感作T細胞の移入により、気道狭窄反応が気道内好酸球浸潤が惹起された。ELISA法とPCA反応を用いた解析では、すべてのRにOA特異的IgE抗体を認めなかった（Table 1）。われわれが観察した反応は、IgEを介する肥満細胞の活性化によるものではないと考えられ、実験抗原刺激後に通常の感作BNラットのIARを観察される急激な肺抵抗の上昇は認めない（Fig.1参照）。

次にmagnetic sortingによるnegative selection法を用いてCD4（W3/25）陽性細胞とCD8（OX8）陽性細胞を選択的に採取し、adoptie transferを用いた同様の実験を行った。この方法で得られたCD4陽性細胞の純度はほぼ99％である（Table.2）。その結果、2×10^7個のOA感作CD4陽性細胞を移入したRで肺抵抗の上昇を認め、OA感作CD8陽性細胞では変化を認めなかった（Fig.4）。次にこの反応が抗原特異的な反応かどうかを検証するために、BSA感作動物から得たCD4陽性細胞を用いて同様の実験を行った。その結果BSA感作CD4陽性細胞のRでは肺抵抗の上昇は認めなかった（Fig.5）。以上の4群で認められた個々のラットの気道反応をAUCを用いて定量化したところ、CD4陽性細胞のRで用量依存的なLARが観察された（Fig.6）。またBAL中細胞種類の検討では、CD4陽性細胞のRに著明なMBP陽性細胞の気道内浸潤を認めた（Fig.7）。これらのラットに特異的IgE抗体は検出されず4）（Table.3）、液性免疫の関与は否定的であり、CD4陽性細胞がLARを惹起したと考えられる。
Figure 1: Time course of changes in lung resistance (R_L) after OA challenge. BN rats were sensitized or sham-sensitized to OA, and 14 d later MNCs were isolated from the intrathoracic lymph nodes. The recipients of OA-primed MNCs were challenged with OA (closed circles, n = 8) or BSA (open triangles, n = 5), and the recipients of sham-sensitized MNCs were challenged with OA (open circles, n = 8). A significant effect was demonstrated by ANOVA (p < 0.0001).

Figure 2: Late airway responses (LAR) after OA challenge. The increases in R_L from 3 to 8 h after antigen challenge were quantitated by calculating the area under the R_L curve against time (cm H_2O/ml s x minutes). The recipients that were given sensitized MNCs and challenged with OA exhibited statistically significant LAR compared with other groups. (** p < 0.01).

Figure 3: Effect of adjuvant transfer on cellular profile in BAL performed at 8 and 32 h after OA challenge. The lungs were lavaged through the endotracheal tube with 25 ml of saline, and cytopsin slides were prepared for cell differentials by Wright-Giemsa staining. Results are expressed as mean ± S.E.M. (* p < 0.05, ** p < 0.01 compared with the data 8 h after the antigen challenge). # p < 0.05 compared with the control group.

Figure 4: Time course of changes in lung resistance (R_L) after OA challenge in the recipients of either W3/25+ or OX8+ cells from sensitized rats. Naive BN rats received either purified 2 million W3/25+ cells (CD4+ group) or OX8+ cells (CD8+ group), which were obtained from OA-sensitized donors 14 d after the sensitization. 2 d later the recipients were intranasally challenged with 5% OA in PBS for 5 min. Rats were analyzed for changes in R_L before, at 3, 10, and 15 min after the OA challenge, and at 15-min intervals for a total period of 8 h. The baseline value of R_L in the CD4+ group (closed circles, n = 6) was 0.186 ± 0.017 cm H_2O/ml per s, and 0.203 ± 0.08 cm H_2O/ml per s in the CD8+ group (open circles, n = 6). A significant effect between groups was demonstrated by ANOVA (p < 0.001).

Figure 5: Time course of changes in lung resistance (R_L) after OVA challenge in the recipients of purified W3/25+ cells which were primed to either OVA or BSA. BN rats were sensitized to either OVA or BSA on day 0. On day 14 W3/25+ cells were isolated from the cervical lymph nodes of sensitized animals and were transferred to naive, syngeneic BN rats. CD4+ (20) group (closed circles, n = 4) received 20 million W3/25+ cells from OVA sensitized donors and control group (open circles, n = 6) received 20 million W3/25+ cells from BSA sensitized donors. On day 16 the recipients were challenged by aerosolized OVA as described in Fig 1. The baseline values of R_L between the groups were not significantly different (0.203 ± 0.016 cm H_2O/ml per s for CD4+ (20) group and 0.197 ± 0.08 cm H_2O/ml per s for the control group). A significant effect between groups was demonstrated by ANOVA (p < 0.001).

Figure 6: Late phase airway responses after OVA challenge. To compare the magnitude of individual airway responses induced by antigen challenge, we calculated the area under the R_L curve after the OVA challenge in each rat. This calculation was done by determining the area under the R_L curve against time above the baseline value, from 3 to 8 h after the OVA challenge (cm H_2O/ml per s x minutes). Kruskal-Wallis test was used; ** significant statistical difference (p < 0.01).
4）サイトカインの関与

気管支喘息患者における気管支肺胞洗浄検査から、気道でのTh2タイプのリバタの活性化が知られている。また抗原刺激後においてもTh2タイプのサイトカイン活性を示す。LARを発現したBNラットのBAL中細胞では、IL-4、IL-5のmRNAが発現し、3-2時間においても同様の傾向を示した。興味あることにLARを発現しないSDラットではTh1タイプを示す。

5）AHRの獲得

BNラットにおける抗原誘発性的AHRは、LARに遅れて発現する。単回の抗原刺激では、刺激後約24から32時間からマウス吸入に対する一過性のAHRが観察され、5日後には正常に戻る。抗原反復刺激では、より高濃度で長期のAHRが誘導される。この中で好酸球や活性化リバタがAHRの獲得に直接的に関与すると考えられる。
AHRの成立に関しても、リンパ球が深く関与する可能性がadoptive transferの実験からも示されている。メサリンに対するAHRを測定したRにおいて、感作T細胞を移植し抗原刺激を行ったところ3～2時間後にAHRが誘導され、AHRの成立に関してもT細胞の活性化が関与することが示された⑨(Fig.9)。
一方CD8陽性細胞の関与を示唆する報告もおり、LARとAHRの成立機構に差があることも示唆されている。さらに他の炎症細胞との関連においても、有用量の副腎皮質ホルモンやcyclosporin Aの投与で気道内炎症細胞の浸潤を抑制してもAHRを抑制しないとする報告もあり⑩。リンパ球と好酸球の活性化以外に、複雑な原因によりAHRが誘導されていると考えられる。

6）喘息反応と接着分子

接着分子は、炎症細胞の活性化、移動などにおいで重要な因子である。喘息に伴う気道炎症は、好酸球とリンパ球の浸潤と活性化が特徴であることから、この両者に発現する接着分子は、喘息反応に影響を与えると考えられる。事実、好酸球とリンパ球に発現するVLA-1に対するmAbを用いると、これらの細胞の気道内浸潤は著明に抑制される⑪。またリンパ球が持つLFA-1に対するmAb(TA-2)やVLA-4に対するmAb(TA-3)の投与は、LARおよびLAR等の気道狭猟反応を抑制し⑫、かつAHRも抑制する⑬。同様にICAM-1に対するmAbの投与は、好酸球浸潤とAHRを抑制する⑭。これらの結果から、抗原誘発性喘息反応における気道狭猟反応や炎症細胞の浸潤に、接着分子が関与することがB Nラットにおいて示された。

7）おわりに

BNラットにおける抗原誘発性のLARとAHRの成立機序に関して検討した。従来LARに続発する現象と考えられていたLARに細胞性免疫の関与が明らかになり、またAHRの成立に至る過程もより詳細に解明されつつある。BNラットの喘息モデルとしての歴史は浅く、今後ますます喘息研究の発展に寄与と考えられる。

謝辞

本稿は、帝京大学医学部附属市病院第3内科秀康先生、国立国際医療センター呼吸器内科藤生雅丸先生、東京医科歯科大学第一内科藤原進先生との共同研究と、カナダMcGill大学Meakins-Christie研究所のJames Martin教授のグループによる研究成果を中心にまとめたものである。ここにあらためて感謝の意を表し、また今後の研究発展を祈願したい。

Table 1 Flow Cytometry Analysis of Mononuclear Cells from Cervical Lymph Nodes and Purified Cells after Immunomagnetic Cell Separation

<table>
<thead>
<tr>
<th>mAb</th>
<th>MNCs (mean±SEM)</th>
<th>All MACS* (mean±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Ab</td>
<td>1.2±0.6</td>
<td>0.7±0.4</td>
</tr>
<tr>
<td>W3/25(CD4)+ cells</td>
<td>59.8±7.4</td>
<td>69.9±6.8</td>
</tr>
<tr>
<td>OX8(CD8)+ cells</td>
<td>6.3±2.1</td>
<td>6.0±0.1</td>
</tr>
<tr>
<td>OX33+ cells (B cells)</td>
<td>28.9±10.5</td>
<td>0.7±0.0</td>
</tr>
<tr>
<td>ED9+ cells</td>
<td>4.4±2.7</td>
<td>1.1±0.3</td>
</tr>
</tbody>
</table>

*MACS, immunomagnetic cell separation.

Table 3 ELISA for Serum OVA-specific IgE and Passive Cutaneous Anaphylaxis Reactions of the Sera from the Recipient Rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Transected cells</th>
<th>OVA-specific IgE (Absorbance mean ±SD)</th>
<th>Danger*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>BSA sensitized CD4+ cells</td>
<td>0.13±0.003 (n = 6)</td>
<td>0 (n = 6)</td>
</tr>
<tr>
<td>CD8+ group</td>
<td>OVA sensitized CD8+ cells</td>
<td>0.12±0.002 (n = 6)</td>
<td>0 (n = 6)</td>
</tr>
<tr>
<td>CD4+(T2) group</td>
<td>OVA sensitized CD8+ cells</td>
<td>0.124±0.005 (n = 6)</td>
<td>0 (n = 6)</td>
</tr>
<tr>
<td>CD4+(T2) group</td>
<td>OVA-sensitized CD4+ cells</td>
<td>0.120±0.006 (n = 4)</td>
<td>0 (n = 4)</td>
</tr>
<tr>
<td>Negative controls</td>
<td>OVA-sensitized CD4+ cells</td>
<td>0.117±0.013 (n = 2)</td>
<td>3.3±1.4 (n = 6)</td>
</tr>
<tr>
<td>Passive controls</td>
<td></td>
<td>1.238±0.136 (n = 5)</td>
<td>13.3±1.4 (n = 6)</td>
</tr>
</tbody>
</table>

* The mean diameter of the dye patch which appeared 30 min after the anaphylaxis challenge was measured (mean±SEM). * PBS was used for negative controls. # Sera from OVA-sensitized donor rats were used as positive controls.

26) Renzi, P. M., S. Sapienza, S. Waserman,

35) 桜原優発性遅発型喘息反応に対するIFN γの効果： 矢咲 望, 渡辺 東, 宮崎泰成, 久内 良, 角勇樹, 沢田英ぐみ, 海野 嘉, 三宅修司, 吉澤靖之. アレルギー第45巻p.894. 1996.

弊社では自社生産動物以外に海外のブリーダーより広く実験動物を輸入し、国内に供給しています。今回、その中のマーシャル社についてご紹介いたします。

Marshall Farms, USA, Inc.

Marshall社は実験用ビーグル犬、モグレル、フェレットを生産し、アメリカ国内はもとより日本・ヨーロッパに実験用動物として長年にわたり供給を行ってまいりました。

Marshall Farms は米国ニューヨーク州の北部オンタリオ湖の畔に面した農園地区の一角に位置し、地理的に隔離された環境下にあります。さらに、ニューヨーク州この地域はプルセラ病がフリーナ地域であります。

Marshall Beagle

マーシャル・ビーグルは1962年に生産を開始し現在年間13,000〜15,000頭を生産し、試験研究用として全世界にビーグル犬を提供しています。主に医薬品開発における新しい化合物に対する前臨床試験の段階において安全性試験を中心に使用されています。

この様な社会的要望に応え、Marshall 社では遺伝的管理を徹底し、特に均一性と取扱易い気質の動物確保に努めてまいりました。個体についても4.5ヶ月齢の時点で Marshall 社の約200項目にのぼるチェック項目によりビーグル犬の規格を評価管理し、さらにすべての個体について18ヶ月齢の段階で血液生化学検査を実施しています。これらの個体の記録は生まれた時点でコンピュータで管理され Beagle History report として皆様に情報が提供されます。生産コロニーの評価として眼底検査並びに心電図のチェックを年1回 Cornell 大学の Dr. Riis と Dr. Moise により実施しています。尚、これらの検査はオプションにて提供しております。

Marshall Beagleの特徴

1. 均一性：ジーンプールが大きく遺伝的に偏りが少ない
 系統のコンピュータ管理による近交係数のチェックにより近交化を防止、
 現在平均世代数は11〜12代を経過
2. 健康な動物：きめ細かい健康管理とワクチン接種
3. ピトに従順：若齢期の子犬への学習により研究に適した性格の動物を提供
4. 安定供給：年間生産頭数 15,000頭
Marshall Ferret

Ferretとは、2000年前頃、ヨーロッパに生息していた野生のイタチ類のMustela putorius又はEuropean polecatを祖先とするウサギの狩猟用として家畜化されたものの変種と見られるイタチ科の動物です。

Marshall Farmは1963年にFerretの繁殖生産からスタートいたしました。この動物は生理学、薬理学、ウイルス学の研究、行動学、寄生虫学、突起学、毒性学等多くの研究分野で有用性を示し、広く分野で使用され、最近では農薬の副作用試験に多く用いられています。

Marshall Farmでは50年の長きにわたり研究用Ferretとして扱い易い、従順な性格のFerretの繁殖に努めて参りました。その結果、厚手の手袋の必要性を無くし手軽に研究用として実験室で使用出来る動物として確立致しました。尚、研究用としてはオスのみの出荷となっています。

Ferretの特徴
●性格はおとなしく、ヒトに従順。
●被毛の色はセーブル色を研究用として用いている。
●妊娠期間が42日と一定。
●産仔数は通常6~10匹で、成獣の体重はオスで1600g、メスで800g。
●体長（尾を除く）は30~40cm。

Butler Mongrels（試験研究用繁殖雛種大型犬）

Butler MongrelsはMarshall Farms USA, Inc.の関連会社で約13Km離れたところに位置するButler Farms USA, Inc.で繁殖生産を1978年より開始しています。動物の管理はBeagle犬と同様コンピューター管理されています。生産コニュニの評価として眼科検査及び心電図のチェックを毎年1回Conrell大学のDr.RiisとDr.Moiseにより実施いたします。

Butler Mongrelsの特徴
短毛で胸郭部が広く、従順な大型犬です。成獣の体重は15~30kgです。Mongrelsは主に薬理研究分野（特に血流）において使用されています。

ご注文・お問い合わせ先
Marshall Farmsのビーグル、モングレル、フェレットは日本チャールズ・リバー（株）が直接輸入・販売しております。ご注文・お問い合わせは下記までご連絡下さい。
TEL：045-474-9340 FAX: 045-474-9341
日本チャールズ・リバー株式会社

弊社の英文社名は Charles River Japan, Inc. です。

動物についてのお問合せ、ご注文先
国内飼育動物 ☎ 045(474)9350 ファックス 045(474)9351
輸入動物 ☎ 045(474)9340 ファックス 045(474)9341