Combination Immune Checkpoint Inhibitors for the Treatment of Human Colon Carcinoma in NSG Mice Engrafted with Human PBMC.

Martin R. Graf; Jason M. Davis; Anya Avrutskaya; Lynnell Thorne; Mark Ellison; Vivek Mahajan; Thi Bui; Aidan Synnot; Robert J. Mullin and Paula L. Milliani de Marval.

Charles River Discovery Services, Morrisville, NC, USA

ABSTRACT

Over the past decade there has been an increasing interest for preclinical models useful for evaluating the efficacy of checkpoint inhibition-based cancer immunotherapeutics. However, the recently developed humanized mouse models require the engraftment of human tumors into immunodeficient mice to develop a tumor load large enough to study the tumor response to checkpoint inhibitors. Here we report on the development of a xenogeneic humanized NSG mouse model, which provides a minimally invasive and highly dynamic system to study the efficacy of checkpoint inhibition-based strategies. In this model, human primary peripheral blood mononuclear cells (PBMC) are engrafted into NSG mice to establish a host immune system. We report here that this model provides an effective and efficient system to test the efficacy of checkpoint inhibition-based strategies. In this study, humanized NSG mice were engrafted with human peripheral blood mononuclear cells (PBMC) at 3x10^7 cell/animal (Hemacare; PBMC-HLA-A*01/01, PBMC-HLA-A*01/02; PBMC- HLA- A*03/24). Seven days post engraftment, animals were implanted with 5x10^6 RKO tumor cells in 50% Matrigel, subcutaneously in the lower hind limb. Peripheral blood was collected in tubes containing K2EDTA and immune cell populations were analyzed by flow cytometry for the expression of PD-L1 and PD-L2. CD8 T expansion. In addition, this study demonstrates that there is a therapeutic window to evaluate cancer treatments before the onset of xenogeneic GvHD in this model.

RESULTS

Here we present the response to the checkpoint inhibitors pembrolizumab (anti-PD-1) and ipilimumab (anti-CTLA-4) in the human RKO colorectal carcinoma model. This high-grade adenocarcinoma cell line was originally established from the primary resected tumor of a patient with metastatic colorectal cancer and has been extensively described in the literature. PD-L1 and PD-L2 expression was assessed in a panel of 9 human tumor cell lines before xenografting into the NSG mice. Four cell lines, HT-1080, Colo205, RKO, HCT116, MDA-MB-231, Calu6, HCC827, SKOV3, were analyzed by flow cytometry for the expression of PD-L1 and PD-L2. A 5% flow cytometry gate on the CD45 population was used to identify leukocytes. By day 22 most of the hCD45 cells were CD3+ distributed between CD4 and CD8 subsets. There is a limited presence of naive T cells, central memory and effector memory T cells. The hPBMC-NSG mouse model is responsive to pembrolizumab alone and in combination with ipilimumab. Ipilimumab produced a modest, yet significant tumor growth inhibition in the RKO humanized NSG model. The RKO colorectal carcinoma model is responsive to pembrolizumab alone and in combination with ipilimumab, pembrolizumab produced a modest yet significant tumor growth inhibition in the NSG mice model.